High-quality videos for machine learning
Optimise your video-based systems with individual and high-quality video data sets
Application examples for video data sets
Creation of video data sets
Machine learning requires optimal training data. Our experts provide you with the customised video datasets you need to develop surveillance, motion or gesture recognition systems. Our videos include
- Movement sequences for housework
- Gestures
- Sports activities
- Scenes, objects and animals
Evaluation/classification of video data sets
For optimum results, existing video data sets must be carefully checked and selected. We take on this task and provide in-depth analyses for optimal classification. We offer you:
- Fast quality check of large amounts of video data
- Classification by quality, length and content
- Analysis of human actions and interactions
Advantages of our video datasets
- Fast delivery:
We deliver large quantities of videos in a timely manner, perfectly matched to your AI system. - Deep analysis:
Our experts provide comprehensive analyses of the video content for your machine learning. - Quality check:
All data undergoes rigorous quality checks to ensure optimal results.
Let's work together to take your video-based system to the next level with precise and diverse video data sets.
Entdecken Sie, wie die Datenannotation es ermöglicht, KI- und ML-Modelle präziser und effektiver zu gestalten.
Was ist Datenannotation?
Datenannotation bezieht sich auf das Kennzeichnen von Datensätzen mit relevanten Informationen, um Maschinen das Verständnis zu erleichtern. Diese Datensätze können aus Bildern, Audiodateien, Videos oder Text bestehen. Durch diese Markierung von Datenpunkten können maschinelle Lernmodelle (ML) effektiv lernen und relevante Muster erkennen.
Warum ist Datenannotation wichtig?
Die kontinuierliche Verbesserung von KI- und ML-Modellen erfordert ständiges Training. Ein entscheidender Faktor für den Erfolg ist die korrekte Datenannotation, die sicherstellt, dass Modelle die richtigen Muster lernen und damit präzise Ergebnisse liefern.
Vorteile der Datenannotation
- Kundenerlebnis verbessern: Bessere Interaktion mit Chatbots und Sprachassistenten durch menschlichere Konversationen.
- Sicherheit und Zugänglichkeit erhöhen: IoT-Geräte erkennen Geräusche und Bewegungen im Haus und steigern so Sicherheit und Barrierefreiheit.
- Barrierefreiheit für Inhalte: Online-Inhalte wie Videos und Bilder werden für Menschen mit Seh- oder Hörbehinderungen zugänglicher.
- Verbesserte Spracherkennung: Größere Zugänglichkeit auf Mobil- und Desktop-Geräten durch verbesserte Spracherkennung.
Arten der Datenannotation
- Bildbeschriftung: Mit Begrenzungsrahmen und Segmentierungsmasken werden Objekte in Bildern markiert und klassifiziert.
- Text-Anmerkungen: Texte werden mit Tags und Metadaten versehen, um Themen, Stimmungen und Entitäten zu erkennen.
- Audio-Kommentare: Transkription von Sprache mit Schwerpunkt auf Akzente und demografische Merkmale.
- Video-Annotation: Markierung von Videoclips zur Objekterkennung und -verfolgung.
Automatisierte vs. manuelle Annotation
- Automatisierte Annotation: Schnell und kostengünstig, kann jedoch ungenau sein.
- Manuelle Annotation: Präziser, aber zeitaufwändig und teurer.
Herausforderungen und Best Practices
- Herausforderungen: Zeitaufwändige und genaue Kennzeichnung sowie sicherstellen, dass alle Daten korrekt markiert sind.
- Best Practices: Einführung effizienter Dateneingabe-Pipelines, sicherstellen, dass Annotationswerkzeuge den Anforderungen entsprechen und die Ausbildung des Personals für effektive Annotation
Datenannotation ist ein entscheidender Prozess, der es ML-Modellen ermöglicht, genauer zu lernen. Unternehmen sollten in die richtige Kombination aus automatisierten und manuellen Methoden investieren, um qualitativ hochwertige Daten für maschinelles Lernen zu gewinnen.