Optimal training for computer vision models
Our image annotation services support the precise labelling and classification of images for the targeted training of computer vision models.
Techniques and application examples
Polygons
Object labelling and classification:
Marking of objects using polygons to train models for accurate object recognition.
Semantic segmentation:
PRECISE SEGMENTATION OF AREAS:
Pixel-precise segmentation for models that need to identify image elements with maximum precision.
Bounding boxes
Object classification and localisation
This technology helps models to recognise individual objects and people in images. Ideal for applications in the automotive industry.
Keypoints
Recognition of shape variants and postures:
Keypoints mark distinctive points on an object, which trains models to recognise faces and bodies.
Line annotation
Recognition of roads and contours
Line annotation enables contours to be recognised, which is useful for traffic monitoring and road tracking.
3D annotation
Detection of room depth
3D annotation helps to visualise objects in spatial structures, e.g. for robot navigation.
Landmarks
Posture and body movement
Landmarks mark specific body parts to train models to recognise body posture and movement.
Advantages of our image annotation services
- Flexibility:
Customisable annotations according to your specifications and project requirements. - Versatile techniques:
From polygons to 3D annotation, we offer various methods for a wide range of applications. - Quality control:
Our annotation processes are subject to strict quality checks.
Our services provide the ideal basis for precisely training computer vision models and taking your image recognition systems to the next level.

Entdecken Sie, wie die Datenannotation es ermöglicht, KI- und ML-Modelle präziser und effektiver zu gestalten.
Was ist Datenannotation?
Datenannotation bezieht sich auf das Kennzeichnen von Datensätzen mit relevanten Informationen, um Maschinen das Verständnis zu erleichtern. Diese Datensätze können aus Bildern, Audiodateien, Videos oder Text bestehen. Durch diese Markierung von Datenpunkten können maschinelle Lernmodelle (ML) effektiv lernen und relevante Muster erkennen.
Warum ist Datenannotation wichtig?
Die kontinuierliche Verbesserung von KI- und ML-Modellen erfordert ständiges Training. Ein entscheidender Faktor für den Erfolg ist die korrekte Datenannotation, die sicherstellt, dass Modelle die richtigen Muster lernen und damit präzise Ergebnisse liefern.
Vorteile der Datenannotation
- Kundenerlebnis verbessern: Bessere Interaktion mit Chatbots und Sprachassistenten durch menschlichere Konversationen.
- Sicherheit und Zugänglichkeit erhöhen: IoT-Geräte erkennen Geräusche und Bewegungen im Haus und steigern so Sicherheit und Barrierefreiheit.
- Barrierefreiheit für Inhalte: Online-Inhalte wie Videos und Bilder werden für Menschen mit Seh- oder Hörbehinderungen zugänglicher.
- Verbesserte Spracherkennung: Größere Zugänglichkeit auf Mobil- und Desktop-Geräten durch verbesserte Spracherkennung.
Arten der Datenannotation
- Bildbeschriftung: Mit Begrenzungsrahmen und Segmentierungsmasken werden Objekte in Bildern markiert und klassifiziert.
- Text-Anmerkungen: Texte werden mit Tags und Metadaten versehen, um Themen, Stimmungen und Entitäten zu erkennen.
- Audio-Kommentare: Transkription von Sprache mit Schwerpunkt auf Akzente und demografische Merkmale.
- Video-Annotation: Markierung von Videoclips zur Objekterkennung und -verfolgung.
Automatisierte vs. manuelle Annotation
- Automatisierte Annotation: Schnell und kostengünstig, kann jedoch ungenau sein.
- Manuelle Annotation: Präziser, aber zeitaufwändig und teurer.
Herausforderungen und Best Practices
- Herausforderungen: Zeitaufwändige und genaue Kennzeichnung sowie sicherstellen, dass alle Daten korrekt markiert sind.
- Best Practices: Einführung effizienter Dateneingabe-Pipelines, sicherstellen, dass Annotationswerkzeuge den Anforderungen entsprechen und die Ausbildung des Personals für effektive Annotation
Datenannotation ist ein entscheidender Prozess, der es ML-Modellen ermöglicht, genauer zu lernen. Unternehmen sollten in die richtige Kombination aus automatisierten und manuellen Methoden investieren, um qualitativ hochwertige Daten für maschinelles Lernen zu gewinnen.